Our research aims to uncover the evolution and functional implications of diverse phenotypic traits across the plant kingdom. The techniques we use integrate both large-scale phylogenetic analyses across thousands of species and small-scale anatomical, developmental, and physiological analyses narrowing in on key organisms. We use seed-free plants (ferns and lycophytes) as study systems given their species richness, ecological and phenotypic diversity, and interesting evolutionary history. Some of the questions we ask include: How are diverse traits constructed? How does the structure of these traits relate to their function? How has this variation evolved? What are the ecological and developmental drivers of structural variation?

Ongoing projects

Plant hydraulics through space and time

Nearly 425 million years ago land plants evolved novel tissues to move water and sugar more efficiently through their body. These conducting tissues, xylem and phloem, greatly amplified mass flow rates, allowing plants to increase photosynthetic capacity, grow larger, and alter aspects of the terrestrial ecosystem including carbon dioxide modulation and increased oxygenation, in turn, profoundly affecting the course of evolution for life on land. These vascular plants now account for over 90% of Earth’s terrestrial flora and are the foundational components of nearly every ecosystem. Throughout geologic time the evolution of vascular tissues led to a striking display of structural and physiological variation. In this pillar of my research program I explore how these integral vascular tissues evolved over geologic time and function in a whole-plant context.

Rhizome cross section of the Hay Scented Fern (Dennstaedtia Punctilobula) showing the primary vasculature. Xylem cells are autoflourescing purple

The evolution of reproductive strategies in ferns

Propagule dispersal is important for the persistence of species and populations. Across all vascular plants propagules (seeds or spores) are developed on leaves. Within the ferns, the majority of species produce spores on the same leaves which they use for photosynthesis, this is termed monomorphic. However, certain species are dimorphic, meaning they produce partially or completely distinct vegetative and reproductive leaves. This modification reaches an exceptional stage in extant seed plants, where reproductive leaves are utterly distinct from vegetative ones. In almost all cases they are modified to the point of unfamiliarity with their homologous leafy counterparts (i.e., the extremely modified seed-bearing leaf: the carpel). The presence of a gradient between monomorphism and dimorphism within the ferns allows us to explore the developmental, functional, and evolutionary consequences of fertile-sterile leaf dimorphism.

Humidity-driven movement In the leaflets of the Sensitive Fern (Onoclea sensibilis)

Fern-animal interactions

Plant-animal interactions are fundamental components of biology. Pollination, for instance, leads to proper fruit and seed development and can serve as a driver of species diversification. Underpinning these interactions is a reward for the pollinators—usually, a sugary liquid secreted from a structure called a nectary. Nectaries are common in flowers, but also occur on leaves, where instead of attracting pollinators, they attract insects to secondarily defend against herbivory. Surprisingly, ferns have also evolved nectaries, where they serve a similar functional role. To gain a more holistic view on the origin and evolution of nectaries, it is crucial to focus on non-flowering plants. As part of my current research, I am using anatomical, molecular, and phylogenetic approaches to explore the convergent origins and evolution of nectaries in non-flowering plants. 

Ant visiting a nectar-gland of Bracken fern (Pteridium aquilinum).

What research can you do in the lab?

Are you interested in botany, pteridology, anatomy, evolution, genomics, physiology, ecology, of biogeography? You maybe fit right in! The BotanEE lab is extremely multidisciplinary, we use a variety of methods to explore how seed-free plants have evolved through deep time and under global change. We have four large research questions that students interested in joining the lab can tap into. These include 1. Vascular plant hydraulics through space and time. 2. The evolution of reproductive strategies in ferns. and 3. Fern-animal interactions. If you are interested in joining the lab as a graduate student, undergraduate, postdoc, or research technician please send an email to with your CV and a short paragraph on your interest in the lab.